| Element-wise |
basics |
+ - * / |
| exponential |
owl.elewise.exp(x) |
| ln |
owl.elewise.ln(x) |
| sigmoid |
owl.elewise.sigm(x) |
| sigmoid back |
owl.elewise.sigm_back(y) |
| tanh |
owl.elewise.tanh(x) |
| tanh back |
owl.elewise.tanh_back(y) |
| relu |
owl.elewise.relu(x) |
| relu back |
owl.elewise.relu_back(y, x) |
| Matrix |
multiplication |
* |
| transpose |
.trans() |
| Reduction |
sum |
.sum(axis) |
| max |
.max(axis) |
| argmax |
.argmax(axis) |
| count zero |
.count_zero() |
| Broadcast |
broadcast |
+ - * / |
| Generator |
fill zeros |
owl.zeros(shape) |
| fill ones |
owl.ones(shape) |
| normal distribution |
owl.randn(shape, mu, var) |
| bernoulli distribution |
owl.randb(shape, prob) |
| Shape |
reshape |
.reshape(shape) |
| slice |
owl.slice(src, dim, off, count) |
| concat |
owl.concat(arrays, dim) |
| I/O |
convert to numpy |
.to_numpy() |
| convert from numpy |
owl.from_numpy(nparr) |
| Convnet |
convolution (ff/bp/grad) |
owl.conv.Convolver |
| pooling (ff/bp) |
owl.conv.Pooler |
| lrn (ff/bp) |
owl.conv.Lrner |
| softmax |
owl.conv.softmax(x, op) |
| Model & Trainer |
neural network definition |
owl.net.Net |
| build network from Caffe’s config |
owl.net.CaffeNetBuilder |
| multi-gpu trainer |
owl.net.NetTrainer |
| feature extractor |
owl.net.FeatureExtractor |
| multi-view tester |
owl.net.MultiviewTester |
| System |
initialize system |
owl.initialize(argv) |
| wait for all laziness to finish |
owl.wait_for_all() |
| create cpu device |
owl.create_cpu_device() |
| create gpu device |
owl.create_gpu_device(id) |
| choose device to compute |
owl.set_device(dev) |